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Compressed Sensing

Inltla”y- .. Solt Kovacs & Yoann
Sensing a signal and compressing it are two distinct processes. Trelle

Examples of today's sensing
mechanisms

Example (Selfie as a signal)

We take a picture using a sensor for each pixels (ccds, name of
the sensing device), and then compress it using the JPEG
standard.

Example (Song as a signal)

Using a microphone, we record the audio signal (diaphragm), and
then compress it using the MP3 standard.
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But why not merge the first two steps ?
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Recent sensing mechanism

y = odX :>©=>)~<:f()~/,¢,\|f).

Compressed Sensing

Decompression

» & is going to be a specifically designed sensing matrix
> f is going to rely on a L; minimization.

» We will assume that X can be written in a sparse way (or at
least compressible) in the W basis.
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Exact Recovery

Let us sense a sparse signal x € RN with matrix ® € RV*N_ We

get measurements
y = &x.

As long as ® obeys a Restricted Isometry Property, solving
x* = argmin||z||,, subjectto ¢z =y

exactly recovers the signal x (i.e. x = x*).
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Stable Recovery from imperfect measurements
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In reality, noise is introduced and signals won't be exactly sparse.
With € a bound on the noise level, the problem is formulated as:

Stable Recovery

x* = argmin||z||}, subject to  [|[Pz —y||, <e. (1)

Theorem

Take x an arbitrary vector in RN and let xs be the truncated
vector corresponding to the S largest absolute values of x. Then
under some assumptions on ®, the solution x* to equation 1
obeys

[Ix = xslln

VS

[[x* = x|[, = Gise + Cays
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Lensless Camera, Bell Labs, 2013
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== Practical Example

Example where the two o Aoorure
processes are merged.

It has a simple
architecture:
» one light sensor
> an aperture assembly
» M measurements
As a result the signal is

already recorded in
compressed format.

Figure: Experiment Sketch, and
image taken with 25% measurements
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Sensing Matrix Design
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Sensing Matrix Design

Let us now talk about the design of the sensing matrix ®.
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Restricted Isometry Property 6ot Kovics & Yourn
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Definition
A matrix ¢ satisfies the restricted isometry property of order K if Rt ey
there exists a dx € (0,1) such that

(1= a)l[x[[3 < llex]I3 < (1 + dr)|x]13
holds for all x € £ = {x : ||x||o < K}.

Remark

If for the sensing matrix ® the restricted isometry property of
order 35 and 4S5 is fulfilled and in addition d35 + d45 < 2, then
the previously mentioned theorem holds.



Compressed Sensing

Main Theorem
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Theorem

Fix dx € (0,1). Let  be an M x N random matrix whose
entries ®;; are i.i.d ~ SSG(1/M). If

A Nice Theorem

M > anlog(N/K),

then & satisfies the RIP of order K with the prescribed 6k with
probability exceeding 1 — 2e="2M  where k, is arbitrary and
Ky = 62/2Kk* — log(42e/dk)/ k1.
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Definition
A random variable X is called sub-Gaussian, denoted
X ~ SG(c?) if there 3¢ > 0 s.t.

E[e™] < exp(c?t?/2) ¥Vt > 0.

If the above inequality is satisfied for c? = 02 = E[X?], then we
call X strictly sub-Gaussian, denoted X ~ SSG(o?).

Example

» X ~ N(0,0?), then X ~ SS5G(o?).

» X : E[X] =0 and P(|X| < B) =1 for some B, then
X ~ SG(B?).
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Linear combinations of indep. $5G-s
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Lemma

Let Xy,.... X, be iid. and a € R™.

If X ~ SG(c?), then >, ;. X; ~ SG(c?||a|[?).
If X ~ S5G(0?), then "1 a;Xi ~ SSG(o?]|cv|]?).
Proof.

Linear comb. of ind. SSG-s

n

E[exp(tz a; Xi)] = E[H exp(ta; X;)] = H Elexp(ta; X7)]
< Hexp (ta;)?/2) = exp( Za )2 t2/2).

For the strictly sub-Gaussian case we replace ¢ with ¢ and use

EQaiXi1 =D El(iX)’] =) a?E[X?] =0 of
i=1 i=1 i=1 i=1
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Concentration of Measure ot Kovice & Yourn
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Theorem
Let X = (X1, Xa,..., Xum) be a vector with i.i.d. ~ SSG(c?)
entries. Then

E[lIX[[3] = Mo

and for any € > 0,

2

<)

P(|IIX]13 — Mo?| > eMa?) < 2exp(

l‘{*

with k* = 2/(1 — log(2)) =~ 6.52.

» Proof goes via Markov inequality.

» The (squared) norm of the vector concentrates around its
expected value with exponentially high probability as M
grows.

» Similar results hold for sub-Gaussian random variables as
well, however, the bounds might not be made arbitrarily
tight. This is the reason we use strictly sub-Gaussian
random variables.



Corollary

Suppose that ®© is an M x N matrix whose entries are i.i.d
SSG(1/M) distributed. Let Y = &x for x € RN. Then for any
€ >0 and any x € RV,

E[IYIE] = [IxI3
and

—Me?

PIIYIIZ = 1IxI12] = ellx||*) < 2exp( ) (2)

H*

Proof.
Note V; = 1| ®yx;. As & are iid., ¥; ~ SSG(||x|[2/M).
Thus, we can apply the previous theorem for the vector Y to get

the result.
O
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Points on unit balls
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Lemma
Let € € (0,1) be given. There exists a set of points Q s.t.

llgll2 =1 Vg € Q and |Q| < (3/¢)",

and for any x € R¥ with ||x||o = 1 there is a point q € Q
satisfying ||x — q||> < e.

Proof.
On the blackboard. O
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Definition
A matrix @ satisfies the restricted isometry property of order K if
there exists a dx € (0,1) such that
(1= dr)lIx[[5 < [[®x]3 < (14 dx)lIx]l5
holds for all x € £x = {x: ||x]|o < K}.
Theorem Assambing th Pices

Fix 0x € (0,1). Let ® be an M x N random matrix whose
entries ®;; are i.i.d ~ SSG(1/M) distribution. If

M > k1K log(N/K),

then ® satisfies the RIP of order K with the prescribed 6k with
probability exceeding 1 — 2e™"2M  where k, is arbitrary and
Ky = 62/2Kk* — log(42e/dk)/ k1.
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The main idea is:

> reduce the problem to all K-sparse x with ||x||]>» = 1, since ¢
is linear

> to construct a set of points in each K-dimensional subspace Assembling the Piece
(via lemma of the unit balls)

» apply the corollary (concentration of ||®x|[3) to all of these
points through a union bound

> extend the result to all possible K-sparse signals
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Summary:
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What we have learned:
> Idea behind compressive sensing
» The (strictly) sub-Gaussian class of random variables

» Sensing matrix design using SSG random variables

What one could still look at: s

» Where compressive sensing is used in reality, e.g. MRI scans
» Further theoretical results concerning compressive sensing
» Choices of basis

> Related results involving random matrices, e.g. the
Johnson-Lindenstrauss Lemma
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