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Initially...
Sensing a signal and compressing it are two distinct processes.

Example (Selfie as a signal)
We take a picture using a sensor for each pixels (ccds, name of
the sensing device), and then compress it using the JPEG
standard.

Example (Song as a signal)
Using a microphone, we record the audio signal (diaphragm), and
then compress it using the MP3 standard.

x̃ =

1 0
. . .

0 1

 x̃

︸ ︷︷ ︸
Sensing

=⇒ x = Ψx̃︸ ︷︷ ︸
Compression

=⇒ , =⇒ x̃ = Ψ−1x︸ ︷︷ ︸
Decompression

.
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But why not merge the first two steps ?

ỹ = Φx̃︸ ︷︷ ︸
Compressed Sensing

=⇒ , =⇒ x̃ = f (ỹ , Φ, Ψ)︸ ︷︷ ︸
Decompression

.

I Φ is going to be a specifically designed sensing matrix
I f is going to rely on a L1 minimization.
I We will assume that x̃ can be written in a sparse way (or at

least compressible) in the Ψ basis.
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Exact Recovery of Sparse Signals

Let us sense a sparse signal x ∈ RN with matrix Φ ∈ RN×N . We
get measurements

y := Φx .

As long as Φ obeys a Restricted Isometry Property, solving

x? = argmin||z ||l1 subject to Φz = y

exactly recovers the signal x (i.e. x = x?).
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Stable Recovery from imperfect measurements

In reality, noise is introduced and signals won’t be exactly sparse.
With ε a bound on the noise level, the problem is formulated as:

x? = argmin||z ||l1 subject to ||Φz − y ||l2 ≤ ε. (1)

Theorem
Take x an arbitrary vector in RN and let xS be the truncated
vector corresponding to the S largest absolute values of x. Then
under some assumptions on Φ, the solution x? to equation 1
obeys

||x? − x ||l2 = C1,Sε+ C2,S
||x − xS ||l1√

S
.
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Lensless Camera, Bell Labs, 2013

Example where the two
processes are merged.

It has a simple
architecture:

I one light sensor
I an aperture assembly
I M measurements

As a result the signal is
already recorded in
compressed format.

Figure: Experiment Sketch, and
image taken with 25% measurements
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Sensing Matrix Design

Let us now talk about the design of the sensing matrix Φ.
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Restricted Isometry Property

Definition
A matrix Φ satisfies the restricted isometry property of order K if
there exists a δK ∈ (0, 1) such that

(1− δK )||x ||22 ≤ ||Φx ||22 ≤ (1 + δK )||x ||22

holds for all x ∈ ΣK = {x : ||x ||0 ≤ K}.

Remark
If for the sensing matrix Φ the restricted isometry property of
order 3S and 4S is fulfilled and in addition δ3S + δ4S < 2, then
the previously mentioned theorem holds.
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Main Theorem

Theorem
Fix δK ∈ (0, 1). Let Φ be an M × N random matrix whose
entries Φij are i.i.d ∼ SSG(1/M). If

M ≥ κ1K log(N/K ),

then Φ satisfies the RIP of order K with the prescribed δK with
probability exceeding 1− 2e−κ2M , where κ1 is arbitrary and
κ2 = δ2/2κ∗ − log(42e/δK )/κ1.
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Sub-Gaussians

Definition
A random variable X is called sub-Gaussian, denoted
X ∼ SG(c2) if there ∃c > 0 s.t.

E [etX ] ≤ exp(c2t2/2) ∀t > 0.

If the above inequality is satisfied for c2 = σ2 = E [X 2], then we
call X strictly sub-Gaussian, denoted X ∼ SSG(σ2).

Example
I X ∼ N(0, σ2), then X ∼ SSG(σ2).
I X : E [X ] = 0 and P(|X | ≤ B) = 1 for some B, then

X ∼ SG(B2).
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Linear combinations of indep. SSG-s
Lemma
Let X1, ...,Xn be i.i.d. and α ∈ Rn.
If X ∼ SG(c2), then

∑n
i=1 αiXi ∼ SG(c2||α||2).

If X ∼ SSG(σ2), then
∑n

i=1 αiXi ∼ SSG(σ2||α||2).

Proof.

E [exp(t
n∑

i=1
αiXi )] = E [

n∏
i=1

exp(tαiXi )] =
n∏

i=1
E [exp(tαiXi )]

≤
n∏

i=1
exp(c2(tαi )2/2) = exp((

n∑
i=1

α2
i )c2t2/2).

For the strictly sub-Gaussian case we replace c with σ and use

E [(
n∑

i=1
αiXi )2] =

n∑
i=1

E [(αiXi )2] =
n∑

i=1
α2

i E [X 2
i ] = σ2

n∑
i=1

α2
i
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Concentration of Measure
Theorem
Let X = (X1,X2, ...,XM) be a vector with i.i.d. ∼ SSG(σ2)
entries. Then

E [||X ||22] = Mσ2

and for any ε > 0,

P(|||X ||22 −Mσ2| ≥ εMσ2) ≤ 2 exp(−Mε2

κ∗ )

with κ∗ = 2/(1− log(2)) ≈ 6.52.

I Proof goes via Markov inequality.
I The (squared) norm of the vector concentrates around its

expected value with exponentially high probability as M
grows.

I Similar results hold for sub-Gaussian random variables as
well, however, the bounds might not be made arbitrarily
tight. This is the reason we use strictly sub-Gaussian
random variables.
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Corollary
Suppose that Φ is an M × N matrix whose entries are i.i.d
SSG(1/M) distributed. Let Y = Φx for x ∈ RN . Then for any
ε > 0 and any x ∈ RN ,

E [||Y ||22] = ||x ||22
and

P(|||Y ||2 − ||x ||2| ≥ ε||x ||2) ≤ 2 exp(−Mε2

κ∗ ) (2)

Proof.
Note Yi =

∑N
j=1 Φijxj . As Φij are i.i.d., Yi ∼ SSG(||x ||2/M).

Thus, we can apply the previous theorem for the vector Y to get
the result.
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Points on unit balls

Lemma
Let ε ∈ (0, 1) be given. There exists a set of points Q s.t.

||q||2 = 1 ∀q ∈ Q and |Q| ≤ (3/ε)K ,

and for any x ∈ RK with ||x ||2 = 1 there is a point q ∈ Q
satisfying ||x − q||2 ≤ ε.

Proof.
On the blackboard.
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Definition
A matrix Φ satisfies the restricted isometry property of order K if
there exists a δK ∈ (0, 1) such that

(1− δK )||x ||22 ≤ ||Φx ||22 ≤ (1 + δK )||x ||22
holds for all x ∈ ΣK = {x : ||x ||0 ≤ K}.

Theorem
Fix δK ∈ (0, 1). Let Φ be an M × N random matrix whose
entries Φij are i.i.d ∼ SSG(1/M) distribution. If

M ≥ κ1K log(N/K ),

then Φ satisfies the RIP of order K with the prescribed δK with
probability exceeding 1− 2e−κ2M , where κ1 is arbitrary and
κ2 = δ2/2κ∗ − log(42e/δK )/κ1.
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Proof:

The main idea is:
I reduce the problem to all K-sparse x with ||x ||2 = 1, since Φ

is linear
I to construct a set of points in each K-dimensional subspace

(via lemma of the unit balls)
I apply the corollary (concentration of ||Φx ||22) to all of these

points through a union bound
I extend the result to all possible K-sparse signals
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Summary:

What we have learned:
I Idea behind compressive sensing
I The (strictly) sub-Gaussian class of random variables
I Sensing matrix design using SSG random variables

What one could still look at:
I Where compressive sensing is used in reality, e.g. MRI scans
I Further theoretical results concerning compressive sensing
I Choices of basis
I Related results involving random matrices, e.g. the

Johnson-Lindenstrauss Lemma
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