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Abstract

Concentrating on the noisy Van Der Pol (VDP) oscillators, we
first reproduce some of their properties in the uncoupled case. Using
numerical simulations, we find that there is indeed phase diffusion as
well as (and as a consequence) a broadening of the entrainment region
at the population level.

In the coupled case, using two simple linear coupling functions, we
find that coupling significantly reduces the entrainment region at the
population level. This effect is proportional to the coupling strength.
Further, the entrainment behavior at the individual level is not influ-
enced.

Future goals are mentioned. The general mapping problem be-
tween coupling functions and desired entrainment responses will be of
interest. Another question is the relation between population entropy
(maximized when uncoupled) and entrainment response (in terms of
Arnold Tongue area). first steps can be directed towards achieving
digital amplitude modulation at the population level, using specific
dependencies. The noise filtering problem is also addressed.
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1 Introduction

This document serves three purposes:

1. Reproducing some results in [1] with new matlab code.

2. Presenting preliminary results about a population of coupled Van Der
Pol oscillators using numerical simulations.

3. Stating future goals in the continuation of [1].

Code, outputs and graphs can be found on the khammash group file
server, in the folder Yoann/Entrainment/MatlabCode .

Numerical analysis has been restricted to the Van Der Pol Oscillator as a
first step in the study of coupled non-linear oscillators. Parameters have been
set to the ones found in the supplementary material of [1]. We reproduce
below the drift term for the SDE model:

µi(x, t) =
(

xi,2
u(t) + c(x) + (d−Bxi,1)xi,2 − xi,1

)

with x anm×2 matrix representing a numberm of two dimensional stochastic
processes. u(t) represents the forcing term, a sinusoidal with amplitude and
frequency as input for Arnold Tongue sampling. An additive coupling term
c is also added. The diffusion term is written as

σi (xi, t) =
√|xi,2| 0 0 0

0
√
|Bx2

i,1xi,2|
√
|u (t) + d · xi,2|

√
|xi,1|

 .
We may now frame the object of our study as the collection of stochastic
differential equations

dxi,· = µi(x, t)dt+ σi(x, t)dWi (1)

with the above drift and diffusion terms.
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2 Simulation Results

Simulations are done using the Euler-Maruyama scheme with the same pa-
rameters as in [1]. Further, Entrainment Scores have been computed using
the same method as in [1].

2.1 Uncoupled Case

Putting the coupling term c to zero, we reproduce some results, namely the
phase diffusion, the difference between the individual and averaged behavior,
and finally the Arnold Tongue extension.

2.1.1 Phase Diffusion

Figure 1: The first 10 maximum peaks of 1000 paths, within the first 100
simulated seconds. No forcing applied.

One can observe the phase diffusion by looking at the first 10 peaks in Figure
1. A broadening of the peaks can be noticed, indicating an increase in vari-
ance. Further, after 9000 simulated seconds, figure 2 shows a distribution of
the local maximas which resembles a uniform distribution.

Figure 2: Maximum peaks for 1000 paths, after 9000 simulated seconds.
Distribution over 100 seconds. No forcing applied.
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Figure 3: Power Spectral Density for single cell and population average dy-
namics. Forcing Amplitude is 0.25 and Forcing Period is 14.5 seconds.

2.1.2 Distinct Behavior

For a subset of the Arnold Tongue region, one can observe a dual behavior
where the dominant frequency changes when one looks at the individual or
at the population level (Figure 3).

2.1.3 Arnold Tongues

The distinct behavior becomes even more apparent when looking at the
Arnold Tongue in Figure 4. The bright yellow color indicates entrainment,
and one easily notices the broadening of the Arnold Tongue when looking at
the population level. The deterministic case for the population level resem-
bles the stochastic case at the individual level (Figure 8).
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Figure 4: Entrainment Regions for Uncoupled Van Der Pol, lighter colors
means better entrainment.

2.2 Coupled Case

Two global linear coupling functions are tested. The first one is denoted Mean
Field while the second is named Osmotic. The name Osmotic is motivated by
the additional subtraction term. Similarly to the osmose phenomenon, only
the relative difference in concentration affects the dynamic. Both are subject
to an amplitude parameter C > 0 which controls the coupling strength.

Mean Field

c : Rm×2 → R2

x 7→ C

(
0

1
m

∑m
i=1 xi2

)
.

Osmotic

cj : Rm×2 → R2

x 7→ C

(
0

1
m

∑m
i=1 xi2 − xj2

)
.

Two things can be noticed in Figure 5. Firstly, the entrainment region
at the population level decreases when the coupling strength increases. Sec-
ondly, the entrainment region at the individual level is not affected by the
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coupling. This happens for both coupling functions. In the deterministic
case, red and blue values (population and individual scores) are equal.

Additionally, for bigger values of C, the entrainment region shrinks.

Figure 5: For different values of the coupling strength C on a logarithmic
scale, the proportion of the Arnold Tongue region which is entrained (at the
0.9 level) is returned. This proportion is the number of entrained results,
divided by the number of trials, over the forcing parameters. Trial positions
can be seen for example on Figure 4. Blue color indicates single cell entrain-
ment, red indicates population entrainment. Reference lines are given for the
uncoupled case.
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3 Discussion & Future Goals

Looking at a population of i.i.d oscillators through the mean, allows one to
average out the independent character of individual uncoupled oscillators.
As a result, entrainment at the population level was improved.

This result raises a few questions. We have seen that as t → ∞, indi-
viduals are distributed uniformly on the limit cycle. As a consequence, the
distribution of the average tends towards maximal entropy. This is made
rigorous by saying that on the phase space [0, 2π], the population average
X has a uniform distribution. It is then well known that it maximizes the
entropy measure

H(X) := −
∫ ∞
−∞

p(x)log(p(x))dx

where p is the continuous probability density of X.
1. In general, can we relate entrainment response at the population level

and H(X)? If so, is the uncoupled case optimal (in the sense of area maxi-
mization for Arnold Tongue region)?

We then have considered simple linear coupling functions which decreased
H(X), as can be seen on Figure 6. We have seen that the entrainment
region at the population level decreased as well (see also Figure 9), further
motivating our first question. However, it did not influence the entrainment
at the individual level.

2. Can we design a coupling mechanism which has initially a low impact
on H(X), but allows better entrainment at the single cell level? Should
this mechanism be non-linear and/or introduce delay? How could such a
mechanism be implemented biologically?

Broadly speaking, coupling mechanisms between noisy oscillators allows
one to implement special statistical dependencies. A general goal is then
to understand how these dependencies will affect the system response to
external input. Ideally, one would like to better understand the mapping
between desired entrainment response and implementable coupling functions.
We can already point towards two naive control problems to drive the first
steps:

3. It has been shown that common noisy input ([2], [3], [4]) may also lead
to entrainment. When entrainment is desirable only at specific times, can
we design a coupling mechanism which filters out common noise input?

4. It has also been shown in [5] that the NF-κB dynamic leads to analog
information processing at the population level. This is also the case for our
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population of VDP oscillators (Figure 7). However, notice that to achieve
digital amplitude modulation, the coupling should not affect the population
average for weak (and vanishing) entrainment signals. This motivates looking
for mechanisms which have low impact on H(X).

To answer these questions, it is proposed to continue experimenting using
numerical simulations (in silico experiments), to gain intuition and under-
standing on these complex dynamics. In a second step, numerical results will
be mathematically proved using stochastic calculus and other appropriate
tools. Finally, obtained models should be tested in vivo so as to biologically
validate, or further refine them.
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4 Additional Plots

Figure 6: Phase diffusion with coupling (C = 0.01). Maximum peaks for
1000 paths after 9000 simulated seconds. Distribution over 100 seconds. No
forcing applied.

Figure 7: Mean Amplitude of population average, as a function of forcing
amplitude. Blue line is the uncoupled case, red line is the coupled (C = 0.1)
case.
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Figure 8: Entrainment regions for uncoupled deterministic Van Der Pol,
lighter colors means better entrainment.

Figure 9: Entrainment regions for coupled (C = 0.01, Mean Field) noisy Van
Der Pol, lighter colors means better entrainment.
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Figure 10: Entrainment regions for coupled (C = 0.01, Mean Field) deter-
ministic Van Der Pol, lighter colors means better entrainment.
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