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1 Introduction
This semester project is motivated by papers and conferences given by N. P. Niyogi
and M. Belkin on the topic of "Manifold Learning". To briefly summarize their
topic, based on the assumption that the data lives on a manifold, they try to
include the geometrical information into a statistical learning algorithm for the
purpose of dimensionality reduction. Our aim will be three fold:

1. Motivating the addressed problem and the assumptions.

2. Understanding their heavy use of the Laplace-Beltrami operator.

3. Explaining the use of graphs to approximate manifolds.

In order to have a broader view on the topic, we will also take a look at two other
methods making the same assumption.

We first review informally the tasks and formulations of statistical learning,
and also take a look at the geometry of data sets. We present the kernel trick that
will help us unify and frame the dimensionality reduction problem. We then take
a more formal approach to motivate the use of graphs and of the Laplace-Beltrami
operator. Finally we formulate and briefly explain three manifold learning algo-
rithms including Laplacian Eigenmaps.
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2 Review of Statistical learning
Statistical learning (or machine learning) aims at understanding and learning from
data with an algorithmic point of view. The name is a loose association of statistics,
being the general study of data, and learning being the process by which machines
learn from their environment or input, to perfect the work they were designed for.

Typical tasks are analyzing dependencies, interaction or similarities among
data points. Most methods can be classified as either being supervised or unsu-
pervised; they solve different problems depending on the distinction.

2.1 Supervised Learning
Supervised learning receives as input a sequence of ordered pairs, the training
data and its label. Knowing the label, we are able to supervise the building of
the model. Because it is trying to relate a training point to its label, it leads to
inference (understanding the relationship between the pair) but also prediction
(from test data, producing a best guess for the label).

Let X denote the space where the training data lives and by L the space of all
possible labels. We also denote by P the probability distribution from which data
points (x, l) ∈ X × L are drawned.

Typically one wants to know the conditional probability of having label l given
data x, which can be rewritten as P(l|x). In fact, it can be shown that attributing
labels with respect to the highest achieved probability P(·|x) is optimal in the sense
that it minimizes the error rate Ave(I(l 6= l̂)) – the average of mismatches between
estimated labels and true labels – on a test data set. Classifying (or attributing
labels to) test data in such a way is called the Bayes Classifier.

Example 2.1 (Supervised learning). One wants to explain the salary of a person
with attributes such as sex, education in number of years, and nationality. We will
then have L = R+ and X = {0, 1}×N×C with C the set of all possible countries.

Example 2.2 (Supervised learning). One could also give the task to a computer
of detecting an animal and naming it using only pictures of it. We will then have
L = A ∪ ∅ the set of all possible animals together with the no animal event, and
X = [0, 1]n2 the space in which pictures live.

2.2 Unsupervised Learning
Unsupervised learning on the other hand only receives a sequence of training data
as input. we can only hope to achieve a better understanding of patterns within the
data set. Using different kinds of measures for similarity between two points, we
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can study clustering, and using structural assumptions we can study the geometry
of the data set.

2.2.1 Dimensionality Reduction

Today most interesting data sets live in high dimensions. The main purpose of
dimensionality reduction is to ease the computational cost due to the curse of
dimensionality. The latter regroups every kind of problems arising when the di-
mension grows to high levels.

From a combinatorial point of view, the number of possible solutions grows
exponentially with the dimension. Furthermore, so does the required number
of points to sample arbitrary spaces. We also acknowledge complications with
distances functions in high dimensional space. When it is possible to reduce di-
mensions up to order 2 or 3, it also allows us to visualize the data.

We frame the problem as follows: For k given points x1, · · · ,xk in Rn, we wish
to find a "good" representation y1, · · · ,yk in Rm with m � n. Let us denote by
f : {x1, · · · ,xk} ⊆ Rn → Rm the function fulfilling the task. The choice of m is
not fixed but problem dependent. In fact, tasks of reduction and modeling, should
be viewed as a whole since the need of one highly depend on the other.

In order to put dimensionality reduction into perspective, let us point out a
strategy for learning from high dimensional data sets :

Scaling The first step differentiates extrinsic properties of the data set with its
intrinsic properties. That is, we typically will use rotations, translations and
sometimes normalizations to set our problem in a generic way (such as mean-
centered, scaled to one, or axed along some canonical basis). We notice that
normalizations are not isometric operations, but may be considered more as
a data cleaning process.

Structuring We create meaningful relationships between data points such that
the structure best reflect the information within the data set. Standard
methods use k-nearest neighbors or ε-balls to build a graph. This step has
to take into account the geometrical assumption on the data set.

Reducing We aim at finding f , the mapping that will optimally preserve the
structure created while reducing the dimension.

Modeling Using the tractable points given by f , we may use clustering methods
or other supervised models to learn, infer or predict from the data.
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2.2.2 Geometric Understanding of Real Life Data

Having the task of dimension reduction in mind, we are trying to find new coordi-
nate systems, mappings in general, and other transformations that will keep most
of the information, while reducing the number of necessary dimensions to express
data points. Studying the shape of the data set, the relative position of data points
or the properties of the underlying space will help us choosing a suitable f .

Example 2.3 (Principal Component Analysis). Let us look for the direction ex-
plaining the maximum variability among a data set. Let us suppose that repeating
the process while choosing next directions in orthogonal spaces, we are able to ex-
plain 95 % of the variability within the data set, using only 2 orthogonal vectors.
By considering a linear structure and two dimensions, we have projected our data
set on a plane without losing two much information, relating variance with infor-
mation in the sense of entropy.

Linear reduction techniques are well understood and accessible, giving an ef-
ficient tool for a first exploratory analysis. To further understand how one can
represent the geometry of data sets we need to move beyond linearity.

We can take a step forward by only requiring the assumed underlying space to
be locally linear. We will see such an example with the LLE method. By gener-
alizing further, requiring every neighborhood of points to be homeomorphic to an
n-dimensional euclidean space, we are considering general (topological) manifolds.
Describing our sets of points using charts mapping to euclidean space allows for a
tractable way of describing data.

While modeling a data set, one is always confronted to the bias-variance trade
off. That is, in order to avoid over-fitting, we impose regularity conditions on the
model. Thus it can motivate the use of differentiable or smooth manifolds as the
support for the data set. In addition let us also assume that the assumed manifold
is compact, this will be useful for theoretical results used later and is a reasonable
assumption when we consider bounded real data sets.

We have now framed the problem as finding f : {x1, · · · ,xk} ⊆ M ⊆ Rn → Rm

withM a smooth compact manifold.

Example 2.4 (Moving camera). Let us consider a camera mounted on rails mak-
ing a circle around an unmoving object. Every image taken by the camera lives in
[0, 1]n×n, a grey scale image with n2 pixels. We then defineM to be the set of all
images taken by (smoothly) rotating the camera. M is thus embedded in Rn2. By
considering k pictures uniformly sampled from this experience, we are looking for
f from {x1, · · · ,xk} ⊆ M ⊆ Rn2 to S1 ⊆ R2.
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Notice how this example can benefit the previous example 2.2. By looking for
this kinds of reduction techniques, images of an animal taken with a small angle
variation will be mapped close by, to be then classified accordingly by a supervised
learning algorithm.

3 Kernel Methodology
In this section we consider the structuring part of the for mentioned strategy, where
we make relations between points explicit. Adapting the algorithmic procedure to
use only inner products between points offers the advantage of lower computational
cost, especially for high dimensional data. Indeed, this approach does not need to
consider coordinates of points. Let us then frame the problem and see how we can
abstract from the positions of points in space.

Definition (Finitely positive semi-definite functions [2]). A function

κ : X × X −→ R

satisfies the finitely positive semi-definite property if it is a symmetric function,
for which the matrices formed by restriction to any finite subset of the space X are
positive semi-definite. We will call such functions kernels.

Notice that so far we do not require X to have any kind of structure. The next
theorem uses the kernel function to build a mapping φ that will send points from
X to a space with a nice structure (Hilbert space).

Theorem 1 (Characterization of kernels [2]). A function

κ : X × X 7→ R,

satisfies the finitely positive semi-definite property if and only if there exist a Hilbert
space F as well as a feature map φ : X 7→ F such that

κ(x, y) = 〈φ(x), φ(y)〉F .

In other words, having a mapping φ from X to a Hilbert space leads to a kernel
but the reverse is also true. We do not include the separability property into the
definition of a Hilbert space here. To have this additional property, we need a
topological structure on X as well as continuity for κ.

In practice kernels are best represented and used in matrix form:
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Definition (Kernel Matrix). Given a set of vectors V = {v1, · · · , vk} the Kernel
matrix is defined as the k × k matrix K whose entries are Kij = 〈vi, vj〉. If we
are using a kernel function κ to evaluate the inner products in a feature space with
feature map φ, the associated Kernel matrix has entries

Kij = 〈φ(vi), φ(vj)〉 = κ(vi, vj).

In [2], they produce a very explicit relations between all steps, using the kernel
approach: Having a dataset and assumptions about how to build a kernel, we can
then build the kernel matrix. From the kernel matrix we can then apply a learning
algorithm to then have a pattern function. In this framework, the kernel matrix
acts as a bottleneck for the information that comes from the dataset.

3.1 Kernel PCA
We first review briefly Principal Component Analysis. Given a set (x1, · · · , xk) of
points in X ⊆ Rn we want to extract principal directions of variance. Computing
variances is easier done when the data set is already centered, let us assume the
matrix X = (x1 · · ·xk)> is centered column wise and see why this makes sense for
any given directions w ∈ Sn−1.

1
k

k∑
i=1

Pw(xi) = 1
k

k∑
i=1

xi · w = 1
k

(
n∑
j=1

wj (x1j + · · ·+ xkj)︸ ︷︷ ︸
=0

) = 0

where the map Pw(x) : Sn−1 × Rn 7→ R projects the vector xi onto the one
dimensional subspace defined by the unit direction w (scalar product as a projec-
tion). In other words, along any directions the data has mean zero. We will then
assume the data is centered as above.

We formulate the problem of extracting the first principal direction w(1) as
follows :

w(1) = arg max
w∈Sn−1

1
k

k∑
i=1

(Pw(xi))2,

which can be rewritten as

w(1) = arg max
w∈Sn−1

1
k
w>X>Xw

where X>X becomes the covariance matrix. We notice that by construction,
the covariance matrix is symmetric and positive semi definite.

The maximization problem can be solved using a Lagrange multiplier which
then leads to the eigenvector having the largest eigenvalue.
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The next principal directions {w(i), w(i+1), · · · } have to be chosen in the same
manner in the subspace perpendicular to the span {w(1), · · · , w(i−1)} of already
found principal directions. They will naturally come from the next eigenvectors.

Using the singular value decomposition (SVD), we link the covariance matrix
C := X>X and K := XX> as follows:

X>
SV D= UΛ 1

2V > ∈ Rk×n (1)
with U = (u1, · · · , un) containing eigenvectors of C and V = (v1, · · · , vk) those

of K. Further, the diagonal matrix Λ 1
2 contains as diagonal entries the square

roots of eigenvalues - say in decreasing order - shared by the two matrices. In
other terms we get the two following decomposition :

X>X = UΛU> ∈ Rn×n

as well as
K = XX> = V ΛkV

> ∈ Rk×k

where Λk agrees with Λ on the first n diagonal components and is extended
with k − n zeros, assuming we have more points than dimensions. If the number
of dimensions however exceeds the number of points, a similar trick is applied but
on the other decomposition. Note that the square roots are well defined since C
and K are by construction positive semi definite.

We observe that having only K, we can recover X̂ = V Λ 1
2 ∈ Rk×n. This will be

a representation of X that will generate the same K and will be directed according
to principal components:

Ĉ = X̂>X̂ = (V Λ 1
2 )>V Λ 1

2 = Λ 1
2V >V Λ 1

2 = Λ.
Finally we also observe that X And X̂ are equivalent up to an isomorphism

of Rn. This can be seen by looking at equation (1) and noticing that U is an
orthonormal matrix.

Next, we assume we are also given a kernel κ. By the above theorem we can
define a mapping φ and an inner product space F such that for all x, y ∈ X , we
have κ(x, y) = 〈φ(x), φ(y)〉F . Kernel PCA will proceed similarly only with the
point images φ(x1), · · · , φ(xk). In practice the kernel matrix is sufficient as we
have seen. Notice that for (x1, · · · , xk) in X ⊆ Rn, by taking the Hilbert space as
Rn and the identity for φ, we can also build a kernel matrix K. In this case the
kernel is K := XX>. Indeed, this matrix multiplication leads to inner products
between the points organized in rows in X.
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The dimensionality reduction is then simply carried out by removing columns
from X̂ starting from the right. Indeed, having eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λmin(k,n), we express the data set total variance as their sum. By removing columns
from the right we explicitly choose to minimize the amount of lost variance.

Now to decide how many columns we should remove, a rule of thumb could be
to take the smallest d such that ∑d

i=1 λi/
∑min(k,n)
j=1 λj ≥ q with a q ∈ [0, 1] some

quantile. another rule of thumb, still using eigenvalues, could be to plot them in
decreasing order and look for an "elbow" in the downward going line.

It should be mentioned however that an eigenvalue analysis to determine d is
not always sufficient. In [7] they give examples where the LLE algorithm cannot
rely on this analysis.

4 Laplace Operator
The Laplacian is a linear operator on some function space, say C∞(Ω) for Ω
being a plane. In our case we consider the Laplace-Beltrami operator that will
then act on a function space such as W 2,2(M) (space of twice differentiable real
valued functions on M with first and second derivatives bounded in the L2(M)
norm) withM a compact riemannian manifold. Coming back to the framework of
statistical learning, thisM will be an assumed smooth version of X , the support
for the training data. Thus it should also be necessary to consider the weighted
Laplace-Beltrami operator since uniformly sampled objects are very unlikely to
happen from real experiences. We will however not consider this relaxation. Later
on Laplacian will refer to both operators, as one is a generalization of the other.

This operator will generate eigenfunctions and associated eigenvalues. As our
main task is to describe the geometry of our support and building a morphism to
a low dimensional space, how can the information provided by the operator help
us ?

We next see three connected elements of motivation that will shed more light
on such a choice. Namely, we mention inverse problem from spectral analysis,
invariance under isometries and intuition behind the eigenfunctions.

4.1 Motivation
It is worth mentioning a well known problem in analysis which can be formulated
as: Can One Hear the Shape of a Drum? The eponym paper by Mark Kac [1],
goes through the problem of inferring the geometry of a plane region, knowing the
set of eigenvalues {λi}i∈I coming from the equation

∆ϕk = λkϕk ϕk|∂Ω = 0. (2)
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To relate the problem to sound, we notice that when we fix a membrane along a
(say smooth) boundary - such as the snare drum and its rim - the sound will be
explained by the wave equation

∂2F

∂t2
= c2∆F

with F = F (~x, t), c some physical constant and the laplacian acting only on the
position. Now if we consider solutions of the form F (~x, t) = U(~x) exp(iωt), we
are representing pure tones that can be reproduced by the membrane. Pure tones
here mean that the underlying vibration is composed of only one sinusoidal or in
other terms one frequency. Substituting U in the equation, we must have

c∆U + ω2U = 0 U = 0 on the boundary.

By redefining λ and including c we come back to equation (2). Under some
mild conditions, it can be shown that the set of eigenvalues is discrete. Further-
more, it is possible to relate quantities such as the area, the boundary length, or
the genus of Ω using asymptotics from the set of the eigenvalues. However, It has
been shown that the spectrum is not sufficient to completely determine the shape
of Ω.

Next we display a proof that the Laplacian commutes with isometries. This is
a necessary condition, since among all potential operators on the function space,
only those will provide information on the intrinsic geometry and not be affected
by for example, its position within Rm for some m if one can find such a mapping.
This will also be the occasion to define the Laplace Beltrami operator in more
details.

We follow the notation and ideas given in [3].

Proposition 1 (The Laplacian commutes with isometries). Consider two rieman-
nian manifolds (M, gM) and (N, gN) with an isometry φ : M 7→ N between them.
We then have

∆gM
(ϕ ◦ φ) = (∆gN

ϕ) ◦ φ

for all ϕ ∈ C∞(N).

To make sense of the Laplacian in the context of differential geometry, we define
it using more general definitions of the gradient as well as the divergence operator.

Definition (Gradient Operator). The gradient is the operator

∇gM
: C∞(M) 7→ ΓC∞(TM)
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such that

〈∇gM
ϕ,X〉gM

= dϕ(X) for all X ∈ ΓC∞(TM) and all ϕ ∈ C∞(M)

where ΓC∞(TM) is the space of all smooth vector fields on M .

Similarly, we generalize the divergence operator. We notice that it maps vector
fields to smooth functions or more abstractly, it maps a one-form to a zero-form.
The central concept used here is the interior multiplication.

Definition (Divergence Operator). The divergence is the operator

divgM
: ΓC∞(TM) 7→ C∞(M)

such that
d(ιXωgM

) = divgM
X · ωgM

.

The exterior derivative d and interior multiplication ι are defined in the ap-
pendix A.

Proof. To prove the proposition we prove that the gradient and the divergence
operator are themselves invariant under isometries in the following sense:

φ?∇gM
(ϕ ◦ φ) = ∇gN

ϕ for all ϕ ∈ C∞(N), (3)

divgN
(φ?X) ◦ φ = divgM

(X) for all X ∈ ΓC∞(TM). (4)
Equation (3) reads: taking the isometric equivalent of ϕ in C∞(M), we apply the
gradient and push forward the image, a vector field. This yields the gradient of
ϕ in C∞(N). For equation (4), we push forward the vector field X and take its
divergence on N . By composing with the isometry we get back the divergence of
X on M . Both these equations are developed in appendix A.

To see it implies that the Laplacian commutes with isometries we write

−∆gM
(ϕ ◦ φ) := divgM

∇gM
(ϕ ◦ φ)

= divgM
φ−1
? φ?∇gM

(ϕ ◦ φ)
= divgM

φ−1
? ∇gN

(ϕ)
= (divgN

∇gN
ϕ) ◦ φ

= −(∆gN
ϕ) ◦ φ.

This uses respectively the definition of the Laplacian, existence of the push forward
inverse, equation (3), equation (4), and again the definition of ∆gN

. Notice that
we used the definition of the Laplacian which makes it a positive semi definite
operator.
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4.2 Eigenfunctions and Approximations
For a compact Riemannian Manifold (M, g), the Laplacian will bring along a
countable set of eigenfunctions that will form an orthonormal basis for L2(M) the
space of square integrable functions on M . This result is called Sturm-Liouville’s
decomposition.

For f ∈ L2(M), we decompose it as a linear combination of the ordered eigen-
functions:

f =
∞∑
j=1

ajϕj

where the (ϕj) are ordered with respect to eigenvalues 0 ≤ λ1 ≤ · · · ≤ λj ≤ · · ·
and (aj) are real coefficients.

Now one may consider fN = ∑N
j=1 ajϕj, an approximation for f . By the men-

tioned theorem, fN will converge to f in L2(M) norm. We additionally provide
two elements that help understand in what sense fN approximate f :

Let us first look ([8]) at the minimization problem

arg min
f∈L2(M)

∫
M
||∇f(x)||2 such that ||f ||L2(M) = 1.

By the duality between the gradient and the divergence operator, we have∫
M ||∇f(x)||2 =

∫
M(∆f)f . Using the Min-Max theorem, candidates for this min-

imization problem will be those eigenfunctions of the Laplacian with smallest
eigenvalues. In fact what is being minimized here can be seen as a regulariza-
tion penalty. Since ∇f(x) gives us the direction of steepest ascent at x as well as
by which quantity, we constrain f to vary as little as possible.

A nice picture to have in mind is to consider the normal to a two dimensional
surface living in three dimension. If we rewrite this normal using the above ap-
proximation we will have more and more details as N increases. The ordering of
eigenfunctions can then be viewed intuitively as an ordering from the general form
to the details.

The second element uses an analogy with the propagation of heat on a surface.
For Ω ∈ R2, we have solutions to the heat equation of the form u(x, y, t) =∑
i aie

−λitϕi(x, y) with (ϕi, λi) the usual ordered eigenvalue pair. Now because
of the minus sign in the exponential, the first pair will provide the dominant
information about the nature of the propagation since they have the slowest decay.
Similarly with sound, first eigenvalues correspond to leading tones.
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5 Discrete Laplace Operator

5.1 Motivation for Graphs
Definition (Graph). We define a graph to be a set X of vertices together with a
set E of edges defined as E = ({(u, v) ∈ X × X : u 6= v}/ ∼) with the equivalence
relation (u, v) ∼ (v, u). A graph can additionally be equiped with weights on every
edge, a real number that we denote by wu,v.

This definition commonly refers to a simple undirected weighted graph. The
use of graphs comes in handy in our case for the following two reasons:

Locality We can see a graph as the result from a decision process on wether two
points are considered to be in the same neighborhood. By fixing an arbitrary
rule for decision, edges testify on the locality property between two points.
Often, to describe what the "intrinsic" geometry of a manifold means, we take
the example of an ant walking on its surface (it could be a n-dimensional ant
!) and walking on it. Similarly, by means of a graph, this analogy translates
well in the case of a set of discrete points.

Discrete representation of diffusion In a continuous setting it is possible to
study the Bronwian Motion on a manifold by taking the Laplace Beltrami
operator as its infinitesimal generator. In a discrete setting, it is possible to
relate a version of the graph laplacian - the random walk graph Laplacian
- with a random walk on graphs (the process run the graph by randomly
choosing an edge at each vertex) [4]. Furthermore, the diffusion process is
central to the study of heat.

We mention two ways of building the edge set E out of a metric space (X , d)
with the above motivation. m-nearest neighbors consists of an algorithm that
defines the set of edges E such that if (u, v) ∈ E either u is one of the m nearest
neighbors of v or v is one of the m nearest neighbors of u.

Another way called ε-balls defines E as (u, v) ∈ E ⇐⇒ d(u, v) ≤ ε.

5.2 Graph Laplacian
We motivate the structure of the graph laplacian using the heat equation in Rm:

∆h(x, t) = − ∂

∂t
h(x, t) x ∈ Rm, t ∈ R+,

with initial heat distribution f(x) = h(x, 0). Recall that the minus sign is a
correction to make the laplacian a positive semi definite operator. The solution to
the heat equation can be written in terms of the heat kernel as follows:
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Htf(x) := h(x, t) =
∫
Rm

H t(x, y)f(y)dy.

By rewriting the laplacian in terms of Ht we get

∆f = − ∂

∂t
h(x, t)

∣∣∣∣∣
x=0

= − ∂

∂t
Htf(x)

∣∣∣∣∣
x=0

= lim
t→0

1
t
(f(x)−Htf(x)).

We can then rewrite the expression using the gaussian kernel and using the fact
that it integrates to one:

∆f(x) = lim
t→0

1
t

f(x) (4πt)−m
2

∫
Rm

e−
||x−y||2

4t dy︸ ︷︷ ︸
=1

−(4πt)−m
2

∫
Rm

e−
||x−y||2

4t f(y)dy

 .
(5)

We can then naively approximate, using a small t, the inner parenthesis in (5)
from a discrete set of k points by:

Ltkf(x) := 1
t

(
f(x)− (4πt)−m

2

k

∑
i

e−
||x−xi||

2
4t f(xi)

)
. (6)

Let us define C = k

(4πt)−
m
2

and write the equation in matrix form:

Ltk = C−1

t

(
CI − e−

||xj−xi||
2

4t

)
∝ (CI −W )

which can then be applied to [f(x1), · · · , f(xk)]>.

5.3 Heuristics for the choice of t
Authors of the method do not have to our knowledge a principled manner of
choosing t. We try to give some insights on the effects of this parameter.

If we assume the points to be drowned from am dimensional (smooth, compact)
manifold embedded in n dimensional euclidean space, then the heat equation from
equation 5 only makes sense as an approximation in a small neighborhood of x.
Namely, neighboring points around x should span a near linear m dimensional
subspace of Rn.

Notice that in the limit, points far away from x in equation 6 are marginalized
(relative to closer neighbors) by a narrow kernel bandwidth. This can be rigorously
stated as follows.
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Proposition 2 ([8]). For a compact subset Ω ⊆ Rm, an open set B ⊆ Ω, a point
p ∈ B, and a bounded function on Ω, the quantity∣∣∣∣∫

Ω
e−
||p−y||2

4t f(y)dy −
∫
B
e−
||p−y||2

4t f(y)dy
∣∣∣∣

decreases to zero at an exponential rate as t tends to zero.

In other words, by choosing t small enough, we improve the approximation by
emphasizing points close enough to be near our linear subspace and by (numeri-
cally) discarding points too far away.

It is worth mentioning that the parameter t does not influence the conditioning
of the associated eigenvalue problem. Indeed, (CI −W ) is a symmetric matrix
and as such is well behaved (well-conditioned) with respect to eigenvalue decom-
positions (see Bauer-Fike Theorem).

However the problem that will arise when t tends to zero is that of connected-
ness. In most cases a connected manifold and hence a connected graph, is natural
(see example 2.4). If we were to find a method that relates the choice of t with
the curvature of the manifold, this would not take into account the sampling by
k points of this manifold. In the case of non-uniform sampling, low density areas
will possibly be disconnected from other points. Thus in practice the connectivity
of the graph is favored by the N -nearest neighbors method and t is chosen big
enough to prevent (numerically) disconnecting the graph.

Finally, the constant C that was introduced in the naive approximation now
needs to take into account the N -nearest neighbors approach. Authors choose to
scale the matrix using the degree matrix (degree of vertices on the diagonal). This
approach is then closer to the Laplacian matrix from graph theory.

This then leads to

L = D−1/2(D −W )D−1/2

where D is the diagonal matrix with degrees of vertices and the weight matrix W
is defined as:

Wij =

 0 if (i, j) 6∈ E
e−
||x−xi||

2
4t if (i, j) ∈ E.

The motivation we have seen is one of many kinds of motivations for matri-
ces with similar structure. To name a few other arguments, one could use the
mean value property for the heat equation, finite differences on the Laplacian or
the underlying generator for a random walk. What is interesting with this spe-
cific construction (omitting the nearest neighbors approach) is that it will lead
to convergence results with respect to the eigenfunctions. In [5], they provide
convergence results for the above as well as a generalization on a manifold M .
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6 Review of Methods with Manifold Assumption
We next see three dimensionality reduction methods motivated by geometrical
intuition. Typically the authors use terms such as "unfolding". We present them
using the same framework; namely we extract the kernel they produce to later use,
for example, kernel PCA.

6.1 Isomap
In [6], they rely on the intuition that lengths of geodesics must be preserved during
the dimensionality reduction procedure. Thus, the algorithm will try to encode
the information on lengths into the kernel.

Two concepts are central in this embedding onto lower space. The first one
uses the following theorem:

Theorem 2 ([6]). An Euclidean distance matrix D ∈ Rk×k yields a kernel matrix
K := −1

2HDH, with H := I − 1
k
11>.

This theorem actually has a converse which states that for a given kernel,
it will be a Gram matrix of k points with interpoint distances given by D, i.e.
Dij = ||xi − xj||2.

Now notice that we only get a kernel matrix if D is constructed with euclidean
distances. This will almost never be the case and we thus need the second idea.
Because the K constructed by the above theorem is not guaranteed to be positive
semi definite, we need to find the closest approximation of K in the space of all
positive semi definite matrices. We will rely on the next theorem:

Theorem 3 (Optimal projection). Let us decompose a symmetric matrix A as
A = UΛU> with U := [u1, · · · , uk] the eigenfunction matrix. Then

Ã :=
∑

i :λi≥0
λiuiu

>
i := UΛ+U

>

is the best approximation with respect to the Frobenius norm. In other words,
||A − Ã|| ≤ ||A −W || for all W in the space of positive semi definite symmetric
matrices.

Proof. Notice that the space of all symmetric matrices associated with the scalar
product 〈A ;B〉 := tr(A>B) is a Hilbert space, that we will denote H. Recall that
the Frobenius norm is defined as || · || =

√
〈· ; ·〉 with the above scalar product.

Further, the subset of all positive semi definite matrices defines a closed cone that
we denote C ⊂ H.
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To find its polar cone, defined as Ĉ := {A ∈ H : 〈A ;B〉 ≤ 0 ,∀B ∈ C}, we use
the Fan inequality (a refinement of Cauchy-Schwarz in our case):

tr(A>B) ≤ λ(A)>λ(B)

Where λ(A) is the vector containing eigenvalues of A. By the characterisation of
positive and negative definiteness using eigenvalues, this tells us that Ĉ ∈ H is the
subset containing all negative definite matrices. We now write A = Ã + Â as the
sum of Ã := ∑

i :λi≥0 λiuiu
>
i ∈ C and Â := ∑

j :λj<0 λjuju
>
j ∈ Ĉ.

By Moreau’s theorem, Ã and Â are the projections of A on their respective
cones.

Now that we have set the background, we display steps to compute geodesics
as well as the kernel.

Input k points in an n dimensional Euclidean space ( i.e real coordinate space
together with an Euclidean distance).

Geodesic Distances Estimation The assumed connected manifold is first rep-
resented by a graph G using for example m-nearest neighbors. Geodesics are
then estimated by shortest paths within the graph (using for ex. Dijkstra
algorithm).

From Distances to Kernel Knowing all distances, we define Dij := d(xi, xj)2

and use the construction of theorem 2.
And finally, we project K on the cone of semi definite matrices. This is done
using the construction of theorem 3.

Output A kernel matrix K.

6.2 LLE
Locally Linear Embedding [7] computes a low dimensional representation of points
with the property that nearby points remain nearby in the representation and in
the similar fashion (i.e by preserving distances among neighbors). This idea as-
sumes the underlying manifold is smooth enough and sufficiently sampled allowing
each points and its neighbors to be approximately on a linear subspace.

Concretely, after building a graph under some locality rules, we express each
point xi as a suitable convex combination of its direct neighbors. It will precisely
be this combination that the algorithm attempts to preserve.

The algorithm can be decomposed into two steps:

Input k points in an n dimensional Euclidean space.
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Local geometry of neighborhoods Compute the coefficient matrixW by min-
imizing ||xi−

∑
j∈N(i) Wijxj||2 with N(i) the set of neighbors of xi as defined

by the graph. As W contains coefficient for a convex combination, its rows
must sum to one.

Preserving the convex combination We now look for a Y ∈ Rk×n that will
minimize ∑i ||yi −

∑
jWijyj||2. This can also be written as∑

i

(yi −WiY )>(yi −WiY ) = Y >(I −W )>(I −W )Y =: Y >MY.

Minimizing the last expression with respect to Y is dealt with an eigenvector
decomposition of M . Notice that in the task of Kernel PCA, dimensionality
reduction is undertook from a variance maximization view point. Therefore
we need to transform our minimization problem into a maximization one:

K̃ := (λmaxI −M)

where λmax is the maximal eigenvalue of the system My = λy. Finally, due
to the convex constraint (i.e. rows of W sum to one), the constant vector 1
is a solution to the eigenvector problem with associated eigenvalue 0 for M ,
or λmax in the case of K̃. This eigenvector has to be taken out, otherwise it
will lead to degeneracy among data points in Y . Indeed each first coordinate
of points would be the same. Therefore we define the kernel to be

K := (I − 1
k
11>)K̃(I − 1

k
11>)

by taking out the (normalized) eigenvector 1√
k
1.

Notice the similarity with theorem 2 above. This can be explained by the
need we have to center our mapped data points φ(xi) in the feature space to
then use Kernel PCA.

Output A kernel matrix K.

6.3 Laplacian Eigenmaps
Using the theory of sections 4 and 5 we can now present Laplacian Eigenmaps
from [8]:

Input k points in an n dimensional Euclidean space.
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Building the graph Laplacian We assume a graphG between points constructed
using nearest neighbors. In addition, we define W to be the weight matrix
(see section 5). We also define D to be the matrix with vertex degrees on its
diagonal. We write L := D −W the laplacian of G and L := D−1/2LD−1/2

the normalized laplacian.

Eigenvalue Decomposition Using section 4, we wish to minimize the expression
Y LY with respect to Y by means of an eigenvalue decomposition. From a
linear algebra point of view, we are in the same situation as with LLE (6.2),
we therefore proceed analogously:

K̃ := (λmaxI − L)

with λmax the maximal eigenvalue of the system Ly = λy and

K := (I − 1
k
11>)K̃(I − 1

k
11>).

Output A kernel matrix K.

7 Conclusion
The three algorithms presented are all, when used with kernel PCA, spectral embed-
dings in the sense that they use an eigenvalue decomposition (spectral techniques)
to find a mapping, and that they all attempt to preserve a particular structure in
the process. Isomap focus on preserving distances, while Laplacian Eigenmaps and
LLE attempt to preserve the neighborhood structure. The Laplacian Eigenmaps
technique relies on the Laplace Beltrami operator to justify itself.

A great deal can be said about this operator. For example while the Rieman-
nian metric determines the Laplacian, the converse is also true [9]. We can thus
expect a deep connection between the Laplacian and the geometry of (M, g). Fur-
thermore as this operator carries an analog of Fourier analysis on manifolds, it
gives tools to change one’s point of view as did the frequency domain with respect
to the time domain in signal processing.

We did not investigate the weighted Laplace Beltrami operator nor did we look
at the methods behavior when data is subject to specific noise, the kind that could
violate the smooth manifold assumption. Furthermore, an analysis on what kind
of structure one wish to preserve for dimensionality reduction would have also been
interesting.
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A Invariance of gradient and divergence under
isometries

We consider two n-dimensional isometric Riemannian manifolds (M, gM) and (N, gN)
with associated isometry φ : M 7→ N . We will need tools such as the pushforward
for vector fields as well as the exterior derivative and interior multiplication for
general tensor fields.

Definition ([10]). Consider a smooth bijective function f : M 7→ N . For X ∈
ΓC∞(TM), we want to produce f?(X) ∈ ΓC∞(TN) the push forward of X. Let us
define it as follow:

f?(X)(q) := dff−1(q)(X(f−1(q))) ∈ TqN ∀ q ∈ N.

Notice that for a smooth bijective function g : N 7→ P , we have g?f?X =
(g ◦ f)?(x). Let us denote the space of all alternating k forms on M by Ωk(M)
and by Ω?(M) := ⊕nk=0Ωk(M) the direct sum. We will also need the interior
multiplication:

Definition ([3]). For ω ∈ Ωk(M) and a smooth vector field X on M we define
ιXω ∈ Ωk−1(M) by

(ιXω)p(X1, · · · , Xk−1) = ωp(X,X1, · · · , Xk−1)

for p ∈M .

Proposition 3 ([3]).

φ?∇gM
(ϕ ◦ φ) = ∇gN

ϕ for all ϕ ∈ C∞(N)

Proof. We respectively use the isometry property, the gradient definition, the chain
rule and the push forward definition.

〈φ?∇gM
(ϕ ◦ φ), X〉gN

= 〈∇gM
(ϕ ◦ φ), φ−1

? X〉gM

= d(ϕ ◦ φ)(φ−1
? X)

= dϕ(dφ(φ−1
? X))

= dϕ(X) ∀X ∈ ΓC∞(TN).

For the next proposition we will need to use standard fact from differential
geometry as well as the definition for the pull back:
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Definition ([3]). Take f : M 7→ N a smooth map. We define the pull back of f
as the map f ? : Ω?(N) 7→ Ω?(M) by:

1. f ?(g) = g ◦ f for f ∈ Ω0(N) = C∞(N).

2. (f ?ω)x(X1, · · · , Xk) = ωf(x)(f?X1, · · · , f?Xk) for ω ∈ Ωk(N) with k ≥ 1.

We then have
φ?ωgN

= ωgM

which follows from the defining property of riemannian volume forms and the
isometry property of φ;

ιφ?X((φ?)−1ωgM
) = (φ?)−1(ιXωgM

)

which follows simply by developing the expression; and finally

d(φ?(ωgN
)) = φ?(d(ωgN

))

which is one of the defining properties of the exterior differentiation.

Proposition 4 ([3]).

divgN
(φ?X) ◦ φ = divgM

(X) ∀X ∈ ΓC∞(TM).

Proof.

divgN
(φ?X) ωgN

= d(ιφ?X ωgN
)

= d(ιφ?X (φ?)−1ωgM
)

= d((φ?)−1(ιXωgM
))

= (φ?)−1d(ιXωgM
)

= divgM
(X) ◦ φ−1(φ?)−1ωgM

= divgM
(X) ◦ φ−1ωgN
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