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1 Introduction

2 Numerical method for ODEs

2.1 Cauchy Problem
The Cauchy problem is an ordinary differential equation (ODE) of order one with
boundary conditions. Let I be an interval of R and f(t, y) a given function defined
on the product S = I×]−∞,+∞[, continuous regarding t and y. Then the scalar
form is written as follows: {

y′ = f(t, y) t ∈ I
y(t0) = y0

(1)

We use several numerical methods to approach this problem. Well-known for-
ward and backward euler methods use the fact that it is equivalent to write the
problem in the integral form : y(t)− y0 =

∫ t1
t0
f(τ, y(τ))dτ .
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2.2 The θ-method
We want to approximate the solution of the problem (1) using the θ-method. To
do so, we first need to discretize the interval of time I. Let h be the distance
|ti+1 − ti|, where ti are nodes forming a grid for our interval. We take θ ∈ [0, 1] as
a free parameter to fix. Plus, because it offers more convenience, we shall use the
notation un = u(tn) throughout this work. Then, it is written as

un+1 = un + h(1− θ)f(tn, un) + θhf(tn+1, un+1). (2)
This method is motivated by a compromise between forward and backward

Euler. Note that if θ = 0 we have the forward Euler, with θ = 1 the backward
Euler, and if θ = 1/2, the Crank-Nicolson method.

Numerical methods are characterized among others, by their order of conver-
gence and their stability domain. The next two sections will give a good overview
of how well the θ-method behave. Such a method is of particular interest when
you can compute the most suitable θ related to your problem. We will see just
below that you can even change the order of the method of a factor one with the
right θ.

2.3 Order of Convergence
We try to investigate the error of the θ-method made after one step. To do so,
we bound |un+1 − u∗n| where u∗n = yn + (1 − θ)hf(tn, yn) + θhf(tn+1, yn+1) is one
step of the θ-method starting from the exact given yn. Assuming y ∈ C4, Taylor
expansion around tn yields

yn+1 = yn + hy′n + h2

2 y
′′
n + h3

6 y
′′′
n +O(h4).

Similarly we have
y′n+1 = y′n + hy′′n + h2

2 y
′′′
n +O(h3).

Hence,

|yn+1 − u∗n| =
∣∣∣∣∣yn + hy′n

h2

2 y
′′
n + h3

6 y
′′′
n +O(h4)− yn − (1− θ)hy′n − hθy′n+1

∣∣∣∣∣ =

=
∣∣∣∣∣h2

2 y
′′
n + h3

6 y
′′′
n +O(h4) + hθy′n − hθ

(
y′n + hy′′n + h2

2 y
′′′
n + h3

6 y
(iv)
n +O(h4)

)∣∣∣∣∣ =

=
∣∣∣∣∣h2(1

2 − θ)y
′′
n + h3(1

6 −
θ

2)y′′′n +O(h4)
∣∣∣∣∣ = εn+1.
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Let hτn+1(h) = εn+1 and τ(h) = max
0≤n≤Nh−1

τn(h). Recall that a method is of order
p if τ(h) = O(hp) for h→ 0. This implies

|yn+1 − u∗n| ≤
(1

2 − θ
)
C1h

2 +
(

1
6 −

θ

2

)
C2h
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with C1 and C2 positive suitable constants. Thus, when θ = 1/2, our scheme is of
order two and of order one otherwise.

2.4 Stability
Consider the following Cauchy problem{

y′ = λy
y(0) = 1. (3)

It can be shown that the exact solution to (3) is given by y(t) = eλt. We
want to find the domain Sexact = {λ ∈ C : limt→∞ |y(t)| ≤ c} where c denotes a
constant. Note that |eλt| = e<(λ)t remains bounded as t tends to infinity if and
only if <(λ) ≤ 0. Thus we have Sexact = {λ ∈ C|Re(λ) ≤ 0}. Equivalently, for
numerical methods the following domain is of interest:

Sapprox = {hλ ∈ C : (yn)n≥0 ≤ c}.
We will investigate stability of the θ-method by focusing on three cases, θ ∈

{0, 1/2, 1}. Firstly, if θ = 0, we go back to the explicit Euler method un+1 =
un + hλun for n ≥ 0 and u0 = 1. By induction we get un = (1 + hλ)n, n ≥ 0.
Thus,

(un)n≥0 bounded ⇐⇒ |1 + hλ| ≤ 1⇐⇒ hλ ∈ B(−1, 1).
B(x,y) denote an open ball in the complex plan with x as center and a radius of

y. Second, when θ = 1/2, we have un+1 = un+h(1−θ)λun+hθλun+1 for n ≥ 0 and
u0 = 1. Applying the same thinking, we get un = (1 + 1/2hλ)n × (1− 1/2hλ)−n,
n ≥ 0.

(un)n≥0 bounded ⇐⇒ |1 + 1/2hλ|
|(1− 1/2hλ)| ≤ 1⇐⇒ hλ ∈ {z ∈ C|Re(z) ≤ 0}

Finally, θ = 1 gives implicit Euler method un+1 = un + hλun+1 for n ≥ 0 and
u0 = 1. We compute un = (1− hλ)−n, n ≥ 0 and conclude

(un)n≥0 bounded ⇐⇒ hλ ∈ C \B(1, 1).
A word can be added on A-stability. A numerical method is said to be A-stable

if Sexact ⊂ Sapprox. Hence, for θ ∈ {1/2, 1} (actually for 1/2 ≤ θ ≤ 1) our method
is A-stable.

Figure 1 show stability domains (Sapprox) calculated above. (???)
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Figure 1: Complex plan with stability domains (light blue) for θ ∈ {0, 1/2, 1}.

3 Numerical methods for SDEs

3.1 Brownian Motion
Some foundations and reminders need to be said in order to introduce properly
the Brownian motion.

Firstly we will denote by N (µ, σ2) the normal (gaussian) distribution which
has µ as mean, and σ2 as variance. This low of probability is involved in a great
variety of applications mainly due to the Central Limit Theorem. It is thus no
surprise to take notice here of its use.

Secondly recall that a stochastic process is a random variable that depends
on time. Properly speaking, we should enclose notions of universe, fields and
other probabilistic notions. Thereafter we won’t use such a formalism as our main
interest is the numerical approximation of these objects.

Definition ([1]). A standard Brownian motion (or standard Wiener process) over
[0, T ], is a stochastic process which satisfies the following three conditions:

1. (Independence of increments) For 0 ≤ s < t < u < v ≤ T the increments
W (t)−W (s) and W (v)−W (u) are independent.

2. (Gaussian increments) For 0 ≤ s < t ≤ T , W (t)−W (s) ∼
√
t− s N (0, 1)

3. (Continuity of paths) W (t), t ≥ 0 are continuous functions of t.

Later on, we will consider Brownian motions such that P (W (0) = 0) = 1
(unless stated otherwise). Brownian motion was first developed in physics to
explain trajectories of moving particles in a fluid. Because it would constantly be
bombarded by the molecules of the fluid, its trajectory is presumably random in
time. On this subject, stochastic theory introduces first additive process and the
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Figure 2: Discretized Brownian path in one dimension

Lévy Modification before the Brownian motion. Hence, the latter is also called a
Lévy process of Gauss type (see [4]).

Figure 2 represents a Brownian motion over time. We can observe twitches
going up and down; this comes from the discretization of the time. Each node ti is
normally distributed with mean ti−1 and fixed variance. That is, after each steps it
will randomly goes either up or down but not too distant from the previous node.

3.2 Stochastic differential equations
An equation of the form

dX(t) = f(X(t), t)dt+ g(X(t), t)dW (t), X(0) = X0, (4)

where W (t) is a Brownian motion and functions f(x, t), g(x, t) are given, is called
a stochastic differential equation (SDE). This is in fact merely a notation. The
rigorous form is given by the integral

X(t) = X(0) +
∫ t

0
f(X(s), s)ds+

∫ t

0
g(X(s), s)dW (s). (5)

The two functions f and g are called drift and diffusion term respectively.
Because a Brownian Motion is nowhere differentiable [1], resolving this equation
requires some stochastic tools. We will use a theoretical result known as Itô’s
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formula but we won’t go into further details. The main difficulty here lies in the
definition of stochastic integrals. How can we define

∫ t
0 X(t)dW (t) ? We want

some properties to be verified: Firstly, if X(t) is some constant c, then the integral
should be c(W (t)−W (0)). Secondly, if X(t) is piecewise constant, then we should
have a sum of ci(W (si+1)−W (si)) (the ci would be the constant values taken in
those intervals of time) as a result. This motivates the definition of what is called
the Itô integral, named after Kiyosi Itô a Japanese mathematician∫ T

0
X(s)dW (t) = lim

n→+∞

n−1∑
i=0

ci(W (si+1)−W (si)).

The procedure reminds the construction of Lebesgues integrals; that is, approach-
ing it by the infinite sum of simple functions. In numerical analysis, constants ci are
replaced by the function value at the node ti (h(ti)). Such a construction is called
a left-hand sum, as we take this value at the left of the interval [W (ti),W (ti+1)].
An alternative to the Itô integral is given by the Stratonovich integral. Instead
of having a left-hand sum, we take the function value at the midpoint h(ti + ti+1)
which gives rise to a midpoint sum. Some numerical approximations converges to
the Stratonovich form besides, there exists transformations to go from one to the
other.

Finally, if X(t) satisfies (5), that means integrals are well defined with the
second being an Itô integral. Naturally this leads us to make assumptions for
f and g. Moreover, we take the opportunity to define a strong solution : (??)
Simplifications on notations can be made here to ease the reading experience; we
shall from now on write f(X(t), t) = f(t). This means, we consider f(t) as being
dependent on t and the whole past of the processes X(t) and W (t).

Theorem 1 (Itô’s formula for f(X(t)) [1]). Let X(t) have a stochastic differential
for 0 ≤ t ≤ T

dX(t) = f(t)dt+ g(t)dW (t). (6)
If h(X) is C2, then the stochastic differential of the process Y (t) = h(X(t)) exists
and is given by

dh(X(t)) = h′(X(t))dX(t) + 1
2h
′′(X(t))g(t)2dt

= (h′(X(t))f(t) + 1
2h
′′(X(t))g(t)2)dt+ h′(X(t))g(t)dW (t).

We will now focus on the equation with drift λX(t) and diffusion µX(t), where
λ and µ are real constants. This will be our test problem:

dX(t) = λX(t)dt+ µdW (t) , X(0) = X0 (7)
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Notice that if µ = 0 there is no white noise and simplifies to the Cauchy problem
with parameter λ. The value of µ can be interpreted as how random and noisy
is the underlying process we want to simulate. Financials use the Black-Scholes
model which is derived from this SDE to determine stock prices distributions. In
this case, µ would represent the volatility of the stock. Some insights can also be
given by resolving it. Using the theorem 1, we can give a heuristic method to give
its solution. Heuristic, because we will take h(x) = ln(x) which is not continuous
in its first derivative, nor its second. Hence, applying Itô’s formula we have

d ln(X(t)) = 1
X(t)dX(t) + 1

2(− 1
X(t)2 )µ2X(t)2dt

= 1
X(t)(λX(t)dt+ µX(t)dW (t))− 1

2µ
2dt

= λdt+ µdW (t)− 1
2µ

2dt.

Finally, after integrating and taking the exponential on both sides of the equa-
tion, we end up with

X(t) = X0 exp
{

(λ− 1
2µ

2)t+ µW (t)
}
. (8)

We can verify that it does correspond to a solution of (7). The following
theorem will help us prove that it is in addition, the unique solution.
Theorem 2 (Existence and Uniqueness [1]). Let X(t) satisfy dX(t) = λ(X(t), t)dt+
µ(X(t), t)dW (t). If the following conditions are satisfied

1. Coefficients are locally Lipschitz in x uniformly in t, that is, for every T
and N , there is a constant K depending only on T and N such that for all
|x|,|y| ≤ N and all 0 ≤ t ≤ T

|λ(x, t)− λ(y, t)|+ |µ(x, t)µ(y, t)| < K|x− y|.

2. Coefficients satisfy the linear growth condition

|λ(x, t)|+ |µ(x, t)| ≤ K(1 + |x|).

3. X(0) is independent of (B(t), 0 ≤ t ≤ T ), and E[X(0)2] <∞.
Then there exists a unique strong solution X(t) of the SDE stated above. X(t) has
continous paths, moreover

E
(

sup
0≤t≤T

X(t)2
)
< C(1 + E(X(0)2)),

where constant C depends only on K and T .
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Constant coefficients fulfil trivially the first two conditions. The third one
impose requirements on the initial value X(0), therefore we will assume it is suf-
ficiently regular. Therefore, by Theorem 2 (8) is the unique (and strong) solution
of (7).

3.3 Approaching an SDE with the θ-method
To apply our numerical method over [0, T ], we first need to discretize the interval.
For L ∈ N∗, we write δt = T/L and τj = jδt with δt representing the size
of the steps. The Brownian Motion need therefore to be considered within a
discrete time interval. Using all three conditions of the definition we can write
W (τj) = W (τj−1) + dW (τj) and W (0) = 0 where each dW (τj) is distributed as a
Gaussian with mean zero and variance δt, i.e dW (τj) ∼ N (0, δt). Using the same
notations (i.e f(Xj, τj) = f(τj)), the θ-method takes the form:

Xj = Xj−1 + δt((1− θ)f(τj−1) + θf(τj)) + g(τj−1)(W (τj)−W (τj−1)), (9)

for j = 1, 2, · · · , L and X(0) = X0. All we did was adding a discretized
stochastic term to the method 2.

3.4 Strong and Weak convergence
There exists two ways of measuring accuracy for numerical SDEs: strong and
weak convergence. The first one measures the rate at which the mean of the error
decreases when δt → 0. The second one measures the rate at which the error of
the means decrease. It is a less demanding criterion because we only rely upon
the expectation of the numerical approximation and not on the path itself.

Definition ([3]). Let Xn denote the value of the numerical method at the node n.
A method is said to have strong order of convergence equal to γ if there exists a
constant C such that

E|Xn −X(τ)| ≤ Cδtγ

for any fixed τ = nδt ∈ [0, T ] and δt sufficiently small.
It will be said to have weak order of convergence equal to γ if there exists a

constant C such that for all functions p in some class

|Ep(Xn)− Ep(X(τ))| ≤ Cδtγ

at any fixed τ = nδt ∈ [0, T ] and δt sufficiently small. Functions p allowed in this
class must satisfy smoothness and polynomial conditions.
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Figure 3: Weak error plot for θ ∈ {0, 1/2, 1} with a (red) reference slope of 1.

We will concentrate on the case where p is the identity function.
Figure 3 show results of an empirical way to find weak convergence order of the

θ-method. These graphs have been done running a matlab program which returns
|E(X(t)) − Sample average of X| versus δt. As it appears on the axis, the lines
are on a loglog scale. The five dots connected by the blue line are computed using
values in the set {2−5, 2−6, 2−7, 2−8, 2−9} for δt. The program also uses 50000 paths
to obtain a rather good expectation (See [3] for more information). Plus, we took
λ = 2 and µ = 0.1.

The slope of the blue line corresponds to the order of convergence because we
see the direct consequence of decreasing the step size on the error of the means.
That means, when the step size is reduced we are able to determine, by comparing
with the red line slope, with which scale the error decreases.

The diffusion parameter had to be small enough, because if we put too much
randomness, we obtain results difficult to work with. Again, this procedure is
empirical and has its limits. It happened that after changing drift, diffusion or
step size (δt), dots did not form a complete straight line and behaved differently.
First and last graphs give good insights of a potential order of weak convergence,
they tend to follow the same slope as the red line. But what about the strange
pattern appearing on the middle graph ? Typically, we are confronted to the
limits of numerical investigations about theoretical results. Without considering
the latter, by comparing with the red line of slope one, we can empirically assume
that the weak order of convergence is 1.

Similarly, Figure 4 shows results for strong convergence order. The program
returns Sample average of |X(t)−XL| versus δt. Results are smoother than before
when θ = 1/2 and we can empirically deduce that the θ-method has strong order
convergence one half by comparing with the red line of slope one half.
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Figure 4: Strong error plot for θ ∈ {0, 1/2, 1} with a red reference slope of 1/2.

3.5 Mean-square stability
We aim at studying stability of the stochastic theta-method. Because random
variables are infinite dimensional object, norms are not equivalent. Therefore, we
will apply the mean-square method to measure stability, as it is one of the most
common.

Definition. Assume X ≡ 0 is an equilibrium (fixed point, steady state). The
trivial solution X ≡ 0 of (4) is called globally (asymptotically) p-th mean stable iff
∀X0 : E‖X(0)‖p < +∞ =⇒ limt→+∞ E‖X(t)‖p = 0. In the case p = 2 we speak of
global (asymptotic) mean square stability. Moreover, the trivial solution X ≡ 0 of
SDE (4) is said to be locally (asymptotically) p-th mean stable iff ∀ε > 0∃δ : ∀X0 :
E‖X(0)‖p < δ =⇒ ∀t > 0 : E‖X(t)‖p < ε. In the case p = 2 we speak of local
(asymptotic) mean square stability. [2]

What kind of stability domain can we expect from the test problem ? Using
Itô’s formula with f(x) = x2 (which is C2), we have

dX(t)2 = (2X(t)2λ+ µ2X(t)2)dt+ 2X(t)2µ2dW (t).

Then taking the expectation and recalling that a Brownian Motion has a mean of
zero,

dE
[
X(t)2

]
=
(
2λE

[
X(t)2

]
+ µ2E

[
X(t)2

])
dt+ 0

d

dt
E
[
X(t)2

]
= E

[
X(t)2

] (
2λ+ µ2

)
E
[
X(t)2

]
= C exp(2λ+µ2)t .

Hence,

lim
t→∞

E
[
X(t)2

]
= 0⇐⇒ <(2λ+ µ2) < 0⇐⇒ <(λ) + 1

2 |µ|
2 < 0.
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Which corresponds to

Sexact = {λ, µ ∈ C : <(λ) + 1
2 |µ|

2 < 0}.

Now that we have the theoretical result, we investigate our numerical scheme.
We have to study the behaviour of lim

j→∞
E [Xj]. For this purpose, we write (9) using

(W (τj)−W (τj−1)) =
√
δtVj with Vj ∼ N (0, 1), since our Brownian Motion follows

a Gaussian distribution with variance δt.

Xj+1 = Xj + δt((1− θ)λXj + θλXj+1) +
√
δtµVjXj

Xj+1 =
(

1 + (1− θ)δtλ+
√
δtµVj

1− θδtλ

)
Xj

and using notations p := δtλ, q := |µ|
√
δt the expression reduces to

Xj+1 =
(

1 + (1− θ)p
1− θp + q

1− θpVj
)
Xj.

Hence, recalling that E[Vj] = 0 and E[V 2
j ] = 1,

E
[
|Xj+1|2

]
=
∣∣∣∣∣1 + (1− θ)p

1− θp

∣∣∣∣∣
2

+
∣∣∣∣∣ q

1− θp

∣∣∣∣∣
2
E

[
|Xj|2

]
.

By recurrence we have

E
[
|Xj|2

]
=
∣∣∣∣∣1 + (1− θ)p

1− θp

∣∣∣∣∣
2

+
∣∣∣∣∣ q

1− θp

∣∣∣∣∣
2
j E [|X0|2

]
and finally we can find our conditions for mean-square stability :

lim
j→∞

E
[
|Xj|2

]
= 0⇐⇒ |1 + (1− θ)δtλ|2 + δt|µ|2

|1− θδtλ|2
< 1.

Let us write this equivalence in another way. Again, by taking p and q2,
the expression on the right hand-side becomes (1 + (1− θ)p)2 + q2

(1− θp)2 ≤ 1. We
need only some elementary calculus to write it in an equivalent manner: q ≤√

(2θ − 1)p2 − 2p. Therefore, we will confront parabolical domains (see Figure 5)
of stabilities (except for θ = 1/2 !). Again, we

11
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Figure 5: Mean-square stability domain for our three values of theta

4 SDEs with jumps

4.1 Poisson Process
Before giving a definition of a Poisson process, we recall the Poisson distribution
and its properties.

Let λ be a strictly positive parameter. A random variable X is said to follow
a Poisson distribution if for all k = 0, 1, 2, · · ·

P(X = k) = λke−λ

k! .

X is therefore a discrete random variable and we can show that it has expectation
and variance equal to λ. This distribution describes the probability at which a
given number of occurrences will take place in a fixed interval of time, assuming
occurrences are independent and of known average rate. We can also add its
moment generating function: E[euX ] = eλ(eu−1).

Definition ([1]). A Poisson process N(t) over [0, T ] is a stochastic process with
the following properties.

1. (Independence of increments) For 0 ≤ s < t < u < v ≤ T the increments
N(t)−N(s) and N(v)−N(u) are independent.

12



2. (Poisson increments) N(t) − N(s), t > s, has a Poisson distribution with
parameter λ(t− s). If N(0) = 0, then N(t) has the Pn(λt) distribution.

3. (Step function paths) The paths N(t), t ≥ 0, are increasing functions of t
changing only by jumps of size 1.

Thus we add a variable to Poisson related problems, we count numbers of
events but also the time at which they occur. Therefore notions of inter-arrival
and waiting time will be of interest. The first one is the time between consecutive
events, the second one for say the kth event, is the time Tk we wait to experience it.
We can show that inter-arrivals times are exponentially distributed with parameter
λ. For the first event we have

P(T1 > t) = P(N(t) = 0) = P(N(t)−N(0) = 0) = e−λt(λt)0

0! = e−λt (10)

and similarly, Tk+1 − Tk has the same distribution [5].
We can note the analogies with the Brownian motion; same kind of properties,

same idea but we replaced the normal distribution with the one of Poisson. These
two probability laws share some common attributes but are of two different kinds:
continuous versus discrete. Brownian motion paths are continuous, it can be seen
for example on the approximation from Figure 2. But Poisson process paths expe-
rience little jumps, they are not continuous, but càdlàg which means continuous on
the right, limit on the left. This will be reflected in the path geometry of Poisson
processes.

In some situations, the last property is too restrictive and inadequate. However,
a more broad definition of the poisson process exists and is called a compound
poisson process. Such a generalisation is made by randomizing the incremental
stepsize. Instead of having a fixed increment of one unit, we let the distance follow
a distribution f.

Definition ([6]). A compound Poisson process with intensity λ > 0 and jump size
distribution f is a stochastic process Xt defined as

Xt =
Nt∑
i=1

Yi,

where jumps sizes Yi are i.i.d. with distribution f and Nt is a Poisson process
with intensity λ, independent from (Yi)i ≥ 1.

We can deduce from this definition that
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Figure 6: poisson process path with parameter λ = 4 and fixed to 20 occurrences

4.2 The Merton model
Using the latter concept, we define the Merton model by adding a term to our
previous test stochastic equation:

dX(t) = λX(t)dt+ µdW (t) + σ , X(0) = X0. (11)

Such a model is used in finance to determine stocks and bonds prices. Why
do we need to introduce jumps ? Well, imagine a quoted company which is about
to announce its results of the year. One may expect a big shift on the stock price
right after the announcement. Such an event will be called a jump as it is a good
visual representation.
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